
Tutorial: Writing a teleop node
This tutorial will get you fully acquainted with the operation of the most important parts of ROS and the MMM library. This will not be actual
teleoperation since you will probably run it on the same computer that is connected to the MMM, but since ROS is a distributed network, you could
theoretically run the teleop node on a different computer from the MMM node. If you wish to learn more about this capability, check out the multiple
machines tutorial.

We will be using the Tkinter GUI library included in Python to make an application that allows the user to control all of the main joints and actuators
on the MMM robot (excluding the grippers) with their keyboard. The standard library for GUI creation in ROS is actually Qt, but that would require
an introduction to an entirely new framework. Python programmers may be more familiar with Tkinter, which is also more straightforward. We'll also
have the program display the ultrasonic sensor values. It will be a simple program, but the goal is to demonstrate the total control and flexibility
available with ROS.

Creating the ROS node

Create a new package named mmm_teleop and give it rospy as a dependency.

cd ~/catkin_ws/src/
catkin_create_pkg mmm_teleop rospy

Then create a file in the mmm_teleop directory named teleop_node.py . You'll need to mark the teleop_node.py file as executable, which can easily
be done in the Permissions tab of the file properties menu or with the console command chmod +x teleop_node.py . This should be done with all
scripts that you plan to directly run in ROS.

On Linux systems, always begin your executable Python scripts with a declaration of the interpreter that will be used. In this case, we'll use the
default Python interpreter included in Ubuntu. In Ubuntu 16.04, this is Python 2.7.

#!/usr/bin/env python

Next we need to import all the necessary libraries.

from __future__ import division
import rospy
import os
from Tkinter import *
from mmmros.msg import Movement, SensorData

We are importing the new division function from the __future__ package so that division works as expected. The rospy library is the interface to all
of the available ROS functionalities. The os import will be useful later. All functions and classes should be imported from Tkinter . Finally, we need
to import the provided MMM message classes from the mmmros package since we will use them to send movement commands and receive sensor
data. In order to import it, the mmmros package only needs to be built once to auto-generate the Python libraries for the custom message types.
You have probably already done this in the installation section.

To begin with the user interface, we will create a class ControlApp that inherits from the base Tk class.

class ControlApp(Tk, object):

 def __init__(self):
 super(ControlApp, self).__init__()

Still in the __init__ function, we'll set some of the parameters that will be used for control. The program will only have one speed for each type of
actuator (wheels, angular, and arms) and it will use them to set a delay to increment or decrement the angle being written to the actuator. The
wheels can simply take a speed value and will move automatically, but to produce smooth movement in the other actuators, we need to gradually
change them while a button is held down. The amount that they will be incremented will be the approximate resolution of motion. Here are some
good values to start with.

self.wheelSpeed = 0.18 # meters/s
self.angularSpeed = 10 # degrees/s

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

self.angularResolution = 1 # degree
self.armSpeed = 0.01 # meters/s
self.armResolution = 0.001 # meters

We will keep track of the position of the robot with an new Movement message full of default values (all 0) since a message type can be used
internally in Python to store data as well. This will make it easy to update the state object and then publish it to the mmm node to synch up the
robot. The moving attribute will be used to turn repeats on and off.

self.state = Movement()
self.moving = False

You probably remember from the ROS tutorials) the methods for initializing a node, creating a publisher, and a subscriber.

Initialize the teleop node
rospy.init_node("teleop")
Create the publisher object for sending movement commands to the mmm node
self.pub = rospy.Publisher("mmm/move_commands", Movement, queue_size=1)
Create the subscriber object for receiving sensor data
self.sub = rospy.Subscriber("mmm/sensor_data", SensorData, self.display_sensor_data)

We now have a node that publishes movement commands to the mmm/move_commands topic and subscribes to sensor data on the mmm/sensor_data
topic. Note that the publisher queue size is 1, which means that old messages will be kicked off very quickly to make way for new ones, which is a
good method for control of our types of actuators.

Interface

Now we'll make a very simple Tkinter interface to gather keyboard input and show sensor data. Since the ControlApp class inherits from the Tk
class, we can call a number of methods on self . First, we set the window to a reasonable size. we bind KeyPress and KeyRelease events to the
keydown and keyup methods, respectively. Those methods will be written later. Then in order to display the sensor values in the Tkinter window, we
need to make a StringVar (part of Tkinter) to hold the text and a Label to display it. The Label widget can be placed into the window with the pack
method. Finally, to show the window and start event handling, the mainloop method needs to be called. Still in the __init__ method, add the
following:

self.geometry("100x100")
self.bind("<KeyPress>", self.keydown)
self.bind("<KeyRelease>", self.keyup)
self.sensorText = StringVar()
self.sensorLabel = Label(self, textvariable=self.sensorText)
self.sensorLabel.pack()
self.mainloop()

Before moving on to the keyboard control, we'll write the callback function to display sensor data. This will also be a method inside the ControlApp
class. The msg argument is automatically passed in by the rospy subscriber we created earlier. Then build a string containing the left and right
sensor values, which can be accessed as attributes of the msg object. The Tkinter label StringVar can be updated with the set method.

def display_sensor_data(self, msg):
 s = "Left: " + str(msg.leftRange) + "\nRight: " + str(msg.rightRange)
 self.sensorText.set(s)

Keyboard Control

Next we will write the keydown method. The control scheme is as indicated in the picture below (although you are free to change it around).

The keydown function will automatically be passed the event argument by Tkinter. The identity of the key that was pressed is contained in the
event.keysym attribute and we will perform different actions based on the key pressed. In the case of wheel controls, the wheel speeds can simply
be set in the self.state variable, and then that state message published to the movement commands topic. In the case of actuators that need to
be constantly updated, we will refer to another function that will be written later, move . Into this move function, we'll pass in the name of the
message field that will be updated (as a string, which will be explained soon), the amount of incrementation, and the speed of movement, which will
be used to calculate a time delay for the repeat. Note that we only want to update a continuous actuator if there is not already one moving,
specified by the value of self.moving .

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python

def keydown(self, event):
 # On/off actuators
 if event.keysym == "Up":
 self.state.leftWheelSpeed = self.wheelSpeed
 self.state.rightWheelSpeed = self.wheelSpeed
 self.pub.publish(self.state)
 elif event.keysym == "Down":
 self.state.leftWheelSpeed = -self.wheelSpeed
 self.state.rightWheelSpeed = -self.wheelSpeed
 self.pub.publish(self.state)
 elif event.keysym == "Left":
 self.state.leftWheelSpeed = -self.wheelSpeed
 self.state.rightWheelSpeed = self.wheelSpeed
 self.pub.publish(self.state)
 elif event.keysym == "Right":
 self.state.leftWheelSpeed = self.wheelSpeed
 self.state.rightWheelSpeed = -self.wheelSpeed
 self.pub.publish(self.state)
 # Continuous actuators
 if not self.moving:
 self.moving = True
 # SHOULDERS
 if event.keysym == "q":
 self.move("leftShoulderAngle", +self.angularResolution, self.angularSpeed)
 elif event.keysym == "a":
 self.move("leftShoulderAngle", -self.angularResolution, self.angularSpeed)
 elif event.keysym == "y":
 self.move("rightShoulderAngle", +self.angularResolution, self.angularSpeed)
 elif event.keysym == "h":
 self.move("rightShoulderAngle", -self.angularResolution, self.angularSpeed)
 # ELBOWS
 elif event.keysym == "w":
 self.move("leftElbowAngle", +self.angularResolution, self.angularSpeed)
 elif event.keysym == "s":
 self.move("leftElbowAngle", -self.angularResolution, self.angularSpeed)
 elif event.keysym == "t":
 self.move("rightElbowAngle", +self.angularResolution, self.angularSpeed)
 elif event.keysym == "g":
 self.move("rightElbowAngle", -self.angularResolution, self.angularSpeed)
 # ARMS
 elif event.keysym == "e":
 self.move("leftArmExtension", +self.armResolution, self.armSpeed)
 elif event.keysym == "d":
 self.move("leftArmExtension", -self.armResolution, self.armSpeed)
 elif event.keysym == "r":
 self.move("rightArmExtension", +self.armResolution, self.armSpeed)
 elif event.keysym == "f":
 self.move("rightArmExtension", -self.armResolution, self.armSpeed)

The move method is designed to be very multipurpose, so we will used some more complicated techniques to avoid writing 12 different functions for
the different actuators, which Python makes fairly easy. The function is guarded by the condition that an actuator is supposed to be moving
(self.moving) and the limits of the actuators themselves. Here we use the ROS parameter server to obtain the minimum and maximum actuator
positions and see if the move method will bring the actuator into a valid position. The next line of the function is equivalent to
self.state.part += amount , but since part is passed in as a string, we will use the setattr and getattr functions to do this. These functions
allow you to modify an attribute of an object by passing in the name of the attribute as a string, which is perfect for our uses! Then a simple publish
command sends the updated state message to the robot node. Finally, we want this function to be repeatedly called while the right key is held
down. To do this, Tkinter provides the after method that allows you to specify a delay after which a certain function will be called. The delay is
calculated as the incrementation divided by the desired movement speed in milliseconds. The arguments for move are also passed in after the
name of the function to be called. We will store this task in the self.repeat variable so that it can be cancelled as soon as the key is released.

def move(self, part, amount, speed):
 minval = rospy.get_param("mmm/" + part + "/min")
 maxval = rospy.get_param("mmm/" + part + "/max")
 if self.moving and minval <= getattr(self.state, part) + amount <= maxval:

 setattr(self.state, part, getattr(self.state, part) + amount)
 self.pub.publish(self.state)
 self.after(int(abs(amount / speed) * 1000), self.move, part, amount, speed)

When a key is released, we would like the robot to stop all motion. In the case of wheel movement, just set the wheel speed to 0 and publish that
command, but for other actuators, we set self.moving to False to prevent the move method from running.

def keyup(self, event):
 if event.keysym in ["Up", "Down", "Left", "Right"]:
 self.state.leftWheelSpeed = 0
 self.state.rightWheelSpeed = 0
 self.pub.publish(self.state)
 elif event.keysym in ["q", "a", "w", "s", "e", "d", "r", "f", "t", "g", "y", "h"]:
 self.moving = False

One final tweak remains to get this program running, and that is to disable the Linux system's key repeat feature, which quickly turns on and off a
keyboard input while it is held down. This is sometimes useful for typing, but it also interferes with the program's function, so it can be turned off
with the os library as shown below. Then instantiate a ControlApp object to start the Tkinter program and the ROS node. Also, remember to turn
key repeat back on after the program finishes! Write the following outside the ControlApp class.

if __name__ == '__main__':
 os.system('xset r off')
 control = ControlApp()
 os.system('xset r on')

Running the program

The best way to run the program is with a roslaunch file. You can read more about launch files in the main documentation, but our file
teleop.launch , which you should place in the mmm_teleop package, will contain the following:

<launch>
 <include file="$(find mmmros)/launch/mmm.launch"/>
 <param name="mmm/port" value="/dev/ttyACM0"/>
 <param name="mmm/sensor/active" value="true"/>
 <node pkg="mmm_teleop" name="teleop" type="teleop_node.py" output="screen"/>
</launch>

Since the program doesn't contain anything that needs to be built or generated, it is not necessary to run catkin_make . Just run the launch file!

roslaunch mmm_teleop teleop.launch

With the Tkinter window in focus, you can enter any of the specified keys and the robot's actuators will move. The program is very basic and
doesn't have a lot of robustness to multiple key commands, so be careful pressing multiple keys at the same. Have fun controlling the motions of
your MMM robot with your keyboard!

Completed tutorial files

https://github.com/Choitek/mmmros-tutorials/tree/master/mmm_teleop

